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ABSTRACT. This article aims to give an overview of the research related to the topological char-
acterization of Stein domains in complex two dimensional space, and an instance of their many
important connections to the smooth manifold topology in dimension four. A particular goal is
going to be motivating and explaining the following remarkable conjecture.

Gompf’s conjecture. No Brieskorn integral homology sphere (other than S3) admits a pseudocon-
vex embedding in C2, with either orientation.

We also include some new examples and results that considers the conjecture for families of rational
homology spheres which are Seifert fibered, and integral homology spheres which are hyperbolic.

1. INTRODUCTION

Arguably one of the most important driving forces for defining new geometric or complex
analytic structures on smooth manifolds, such as Stein/Symplectic/Contact structures or in-
tegrable foliations, is the question: How much of the smooth topology of underlying man-
ifolds can be determined by those geometric structures defined on them? Recent advances
in [1, 14, 16, 17, 23, 32] provide an abundance of evidence on many fronts that this is actually
already coming to fruition, and sometimes amazingly to a complete understanding [17]. This
philosophy is of special importance when the underlying manifold is 4–dimensional, as despite
many advances on many fronts, much of the mystery about 4–manifolds both smooth and topo-
logical is yet to be understood. For example, one giant question is about the resolution of the
smooth 4–dimensional Poincaré conjecture

Conjecture 1 (4D Smooth Poincaré Conjecture). A smooth four dimensional manifold homeomorphic
to the 4-sphere S4 is actually diffeomorphic to it.

Stein manifolds and their theory have been crucial tool to better understand smooth manifold
topology [3,5,10,14,26,28]. Recall that a Stein manifold is a complex manifold with a particularly
nice convexity properties, and the existence of a Stein structure on a smooth manifold is a homo-
topical question, though it is more subtle when underlying smooth manfold is 4–dimensional
(see Section 2). So it might be supposed that with no topology to get in the way one can always
find a Stein structure. In this direction we have the following persuading reformulation [57, Re-
mark 4.8].

Theorem 2 (Eliashberg’s reformulation). The smooth 4–dimensional Poincaré conjecture is true if and
only if every contractible 4–manifold X4 with ∂X4 = S3 admits a Stein structure.
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At the moment, it is hard to justify how much this reformulation makes the original conjec-
ture easier, but it certainly provides a new avenue to think about special cases or generaliza-
tions of the reformulation. For example, an important question that was raised in contact- and
symplectic-geometric circles is the following.

Question 3. Does every compact contractible 4-manifold with Stein fillable boundary admit a Stein
structure?

As a sample result, we mention the following result that shows the answer to Question 3 in
general is negative.

Theorem 4 (Mark-Tosun [38]). There exists a compact contractible manifold with no Stein structures,
with either orientation.

Our example does not have 3-sphere boundary, but illustrates that there is no general existence
principle that would resolve Conjecture 1 via the reformulation mentioned above. On the other
hand it is still an important question to better understand, and if possible characterize which
contractible 4–manifolds admit a Stein structure. In particular, those that smoothly embedded
in R4 as these are related to Gompf’s conjecture (see Section 2 below for more details), and also
to recent work of Weimin Chen [9] regarding certain questions in smooth manifold topology.
In particular, Chen’s work has the motivation to find smooth 4-manifolds homeomorphic but
not diffeomorphic to the complex projective plane CP 2. One of the key step in his program
requires to find Stein domains in C2 with varying degree of convexity (see [10, 11, 39, 41]) and
understand their contact boundary. Motivated by this, we will approach this question from the
three-manifold topology point of view. In particular, we start with the investigation of the fol-
lowing broad question that sits at the intersection of Stein/Symplectic topology, low dimensional
smooth topology and complex analytic theory in severable variables.

Question 5. Which integral homology spheres embed in C2 as the boundary of a Stein domain in C2?

We will expand on this question and a conjectural picture for its partial resolution in later sec-
tions. For now we point out that Question 5 is actually a natural extension of two classic, and
well-studied problems, with tremendous impact, in low dimensional topology: Which integral
homology spheres admit topological/smooth embeddings in R4? For the topological ones, there
is a complete answer due to Freedman from 1982, who proves, for example, that any integral
homology sphere bounds a contractible topological 4-manifold. The answer is negative for the
smooth embeddings by many people, starting with as a consequence of the celebrated Rokhlin’s
Theorem from 1952. This result shows for example that the Poincaré homology sphere cannot
smoothly be embedded in R4. This contrast of topological vs smooth embeddings yielded an un-
known phenomenon: there exist closed oriented 4-manifolds with no smooth structures. On the
other hand there are many infinite families of integral homology spheres (including Brieskorn
homology spheres and 3-manifolds modeled on other geometries) that do embed in R4 smoothly.
For example, smooth 1

n surgery on a slice knot, where the slice disc has two minimums, gives
such homology spheres. It is worth mentioning though that despite many advances and lots of
work done in the last seven decades, it is still unclear, for example, which Brieskorn homology
spheres embed in R4 smoothly, and which do not. This line of research brought a huge increase
in our understanding of smooth manifold topology. We think that Question 5, as we mentioned
above and will discuss below in detail, is not just a natural next question but also has strong
potential for better understanding smooth manifold topology.
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Plan. We start, in Section 2, by reviewing some basics of Stein manifolds and Eliashberg’s
topological characterization of such manifolds. In Section 3, we explain Gompf’s work towards
understanding Question 5, and his remarkable prediction for this question, as Conjecture 11, as
well as our partial progress, joint with T. Mark, towards answering this conjecture. In Section 4,
we study some contractible 4–manifolds with hyperbolic boundary, as well as infinite families
of rational homology balls with Seifert fibered boundary, and provide some new results (Theo-
rem 18 and Theorem 20).

2. STEIN MANIFOLDS AND THEIR TOPOLOGY

2.1. Stein manifolds and their topology. Recall that a Stein manifold is a complex manifold
(W,J) admitting a proper Morse function φ that is bounded below and strictly plurisubharmonic
(or J-convex). The J-convex function φ produces a Kähler form ωφ := −ddCφ = −d(dφ ◦ J) on
W , and φ−1(−∞, c] will be a Stein domain (compact parts of Stein manifolds) for any regular
value c. This in turn implies that the level sets are contact manifolds where contact structure is
gotten from the complex tangencies of the boundary.

Example 6. (C2, |z|2, i) is a Stein manifold. With the given plurisubharmonic function, we get (B4, |z|2, i)
as a Stein domain. The contact boundary is (S3, ξstd) where by considering S3 as the unit sphere in R4

and taking coordinates (x1, y1, x2, y2) we can describe the contact structure ξstd explicitly as the kernel of
αstd = (d|z|2 ◦ i)|S3 = (x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3 .

A fundamental question one can ask about Stein manifolds/domains is how common they
are and what topology they permit. Making this question more precise we can first consider
Stein manifolds as abstract manifolds, and ask which open, oriented smooth 2n–manifolds admit
Stein structures? There is, in principle, a complete answer to this question. Namely, smooth
manifolds supporting a Stein structure were characterized in terms of their handle structure by
Eliashberg [15], with some refinements in the case of Stein surfaces due to Gompf [26].

Theorem 7 (Eliashberg). LetX be a smooth 2n-dimensional manifold with an almost complex structure
J . For n ≥ 3, if X is the interior of a possibly infinite handlebody whose indices are all less than or equal
to n, then X admits a Stein structure J0 homotopic to J . For n = 2, additionally, 2-handles are attached
along Legendrian knots with framing tb− 1.

A non-example of a Stein manifold is S2×R2. This manifold cannot carry any finite or infinite
Stein structure. This can be proved, for example, by using gauge theory. More precisely, there is a
version of the adjunction inequality for Stein surfaces due to Lisca-Matić [34], which in particular
implies that any homologically essential sphere in a Stein surface must have self-intersection less
than or equal to −2. But S2 × 0 ⊂ S2 × R2 clearly contradicts this.

A more interesting example of a Stein domain is the following.

Example 8. Consider the Mazur manifold as in Figure 1. One can easily see that
• X embeds smoothly in R4. To see this, we form X × [0, 1]. This has the same handle structure

except that the 2-handle is now attached along a knot in S1×S3, which we can unknot. So 1- and
2-handles geometrically cancel, and we get X × [0, 1] ∼= B5. Hence, X = X × {0} → ∂B5 =
S4 = R4 ∪ {∞}.
• X is abstractly Stein. For this we apply Eliashberg’s Theorem 7 above. See Figure 2.

On the other hand, we ask whether X is Stein in C2.
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0X

FIGURE 1. The manifold X has single 0−, 1− and 2-handles where the 2–handle
is attached along a knot that links the 1–handle algebraically once. This is a recipe
for a contractible manifold known as Mazur-type manifold.

0
X

FIGURE 2. The manifold X , described as a Stein handlebody following Eliash-
berg’s recipe in Theorem 7. The attaching sphere for the 2–handle is in Legen-
drian form, and one can easily calculate that its Thurston-Bennequin number is
tb = 1.

More generally, we ask when open subsets of a fixed complex surface (e.g. C2) can be made
Stein in the complex structure inherited from the complex surface? We will be particularly inter-
ested in compact pieces (Stein sub-domain) of such a Stein manifold. Before we further proceed
we pause to provide a source for many manifolds that are abstractly Stein but not Stein as a sub-
set of a C2: Let X be a 4-manifold obtained by attaching a 2–handle to B4 along a Legendrian
knot K with framing tb− 1, then by Eliashberg’s result Theorem 7 such an X can be made Stein
abstractly. On the other hand by using simple smooth topology and the adjunction inequality
for Stein surfaces, one can conclude that such an X can never be made Stein in C2 in its usual
complex structure. A precise argument for this, which is due to Gompf, goes as follows. Suppose
X is Stein, then we can consider X = 0 − h ∪ 2 − h sitting in S4 as S4 = C2 ∪ {∞}. Now re-
moving the interior of the 0-handle leaves behind the 2-handle sitting in the 4-ball. In particular,
the attaching curve of the 2-handle K is slice as it bounds the core of the 2-handle. Now a slice
disk in the 0-handle together with the core of the 2-handle produces a homologically non-trivial
sphere of self intersection 0 in the Stein surface X . But this is in contradiction with gauge theory
fact for Stein surfaces mentioned above [34]. In other words, for a given 4–manifold X in a fixed
complex surface (Z, J), being abstractly Stein, though is necessary, is not sufficient to conclude
that X is Stein with respect to J|X .

3. HOLOMORPHIC CONVEXITY, GOMPF CONJECTURE AND RESULTS

We assume from now on that the ambient complex manifold is (Cn, i). The particular type of
convexity for a Stein sub-domainX of Cn that we would like to consider is holomorphic convexity.
Avoiding highly technical aspects, we say X is holomorphically convex if one can find a strictly
i-convex function ψ in a neighborhood U of X . Such domains are also called domains of holo-
morphy in complex analytic literature. Stein domains in Question 5 are to be understood as holo-
morphically convex or domains of holomorphy. A recent research program of Gompf [26,27,28],
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which was a huge inspiration for our work here, uncovers that holomorphically convex Stein
submanifolds in a complex surface are ubiquitous, and provides the following flexibility theo-
rem (an alternate, but less explicit proof that works in any dimension can be found in Cieliebak-
Eliashberg’s book [10]).

Theorem 9 (Gompf). A codimension-0 submanifold U of a complex surface is isotopic to a Stein sub-
surface if and only if the induced complex structure is homotopic through almost-complex structures to a
Stein structure on U.

Now if W is a Mazur-type manifold and carries a Stein structure JW . Then, as in Example 8,
we can find a smooth embedding ψ : W −→ C2. Since W is contractible, it has only one almost-
complex structure up to homotopy. So, Theorem 9 applies to isotope the embedding in C2 until
its image is Stein. In other words we proved:

Corollary 10. Any Mazur-type manifold which is abstractly Stein is holomorhically convex in C2. In
particular, X in Example 8 above is holomorphically convex Stein domain in C2.

Following Gompf, we refer to a 3-manifold that bounds a domain of holomorphy in C2 as
a pseudoconvex embedding in C2. Using this result, Gompf exhibits a variety of interesting ex-
amples of Stein manifolds in C2 including domains of holomorphy that are diffeomorphic to
non-standard smooth structures on R4, contractible Stein domains with non-simply-connected
boundary, and domains of holomorphy that have homotopy type of S2, disproving a conjecture
of Forstneric̆ [22]. We note that in Gompf’s flexibility theorem, there is very little control on the
boundary of domain of holomorphy, and examples he has can always be shown to have hyper-
bolic boundary. On the other hand, Gompf in [28] makes the following remarkable prediction
for Question 5.

Conjecture 11 (Gompf). No Brieskorn integer homology sphere (other than S3) admits a pseudoconvex
embedding in C2, with either orientation.

Before proceeding further with what we know about this conjecture, we briefly pause to intro-
duce Brieskorn spheres, and make some remarks for why this conjecture is not trivial for these
manifolds.

3.1. Brieskorn spheres. The Brieskorn sphere Σ(p, q, r) is the link of a complex hypersurface
singularity. More precisely, consider the complex variety V (p, q, r) = {zp1 + zq2 + zr3 = 0} ⊂ C3

where p, q, r are positive integers. This variety has an isolated singularity at the origin, and the
intersection of V (p, q, r) with a sufficiently small sphere is the 3–dimensional manifold Σ(p, q, r).
See Figure 3.

If p, q, r are pairwise relatively prime, which will be our focus in this section, then Σ(p, q, r)
is an integral homology sphere, often called Brieskorn homology sphere. Indeed, when at least
one of p, q, r is 1, then Σ(p, q, r) = S3.

By definition, the Brieskorn homology sphere Σ(p, q, r) carries an action of the circle, which
results a description as a Seifert fibered manifold, and surgery diagram, which we describe next–
See [47] for more details, and the definitions and conventions we are using here.

For any pairwise co-prime integers p, q, r ≥ 2, the Brieskorn homology sphere Σ(p, q, r) is
the unique (small) Seifert fibered homology sphere over S2 with multiplicities p, q, r. The (un-
normalized) Seifert invariants p

p′ ,
q
q′ ,

r
r′ ∈ Q that determine Σ(p, q, r), up to orientation and fiber
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D6(ε)

V = {zp1 + zq2 + zr3 = 0}

V ∩ S5(ε) = Σ(p, q, r)

FIGURE 3. Brieskorn spheres Σ(p, q, r). Here S5(ε) denotes a sufficiently small
sphere around the origin.

preserving diffeomorphism, and can be chosen arbitrary as long as they satisfy the following
equation.

(1) d = p′qr + pq′r + pqr′ = ±1

0

p
p′

q
q′

r
r′

e0

− 1
r1
− 1

r2
− 1

r3

FIGURE 4. The manifold Σ(p, q, r) with the unnormalized/normalized Seifert in-
variants on the left/right. We will use notation Y (e0; r1, r2, r3) for the description
on the right where e0 is either −1 or −2 and ri ∈ Q ∩ (0, 1).

We can reduce Equation 1 modulo p (similarly modulo q and modulo r) to uniquely determine
(p′, q′, r′). So, in particular we can take that 0 < |p′| < p, 0 < |q′| < q and 0 < |r′| < r (See [47,
Section 1.1.4] ). A surgery description of Σ(p, q, r) is depicted on the left hand side in Figure 4.
The case d = 1 in Equation 1 corresponds to the usual orientation when the Σ(p, q, r) is oriented
as the link of singularity of {zp1 + zq2 + zr3 = 0} in C3, and d = −1 corresponds to the opposite
orientation. In the below we fix an orientation so that d = 1, and let M = Σ(p, q, r).

Using our notation above, denote the number −(p
′

p + q′

q + r′

r ), which is an invarinat of M , by
e(M), called the (rational) Euler number of M [43]. Using Equation 1, we get that e(M) = − 1

pqr .
Alternatively, by applying negative Rolfsen twists along small meridional curves in the diagram
on the left hand side of Figure 4, we can replace p

p′ ,
q
q′ ,

r
r′ with − 1

r1
= p

p′′ , − 1
r2

= q
q′′ , 1

r3
= r

r′′ ,
respectively so that − 1

ri
< −1 (i.e. ri ∈ (0, 1)) for i = 1, 2, 3. The resulting framing on the large

unknot is e0(M), which is an invariant of M . In this case the data (e0, r1, r2, r3) correspond to
the normalized Seifert invariants of M . We note two things: first, each negative Rolfsen twist
reduces the framing 0 of the large unknot on the left hand side of Figure 4 by one. So, e0(M) is
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the total number of Rolfsen twists applied times−1. Second, say p
p′ is positive, then to normalize

it we apply a negative Rolfsen twist, and get p
p′−p = p

p′′ . From this we see that p′′

p = −1 + p′

p .
Combining this with the definition of e(M) above and Equation (1) we find the following for the
normalized invariants:

r1 + r2 + r3 = −e0(M)− 1

pqr
= −e0(M) + e(M).

So, e0(M) ∈ {−1,−2} as 0 < r1 + r2 + r3 < 3. In terms of unnormalized Seifert invariants we
have e0(Σ(p, q, r))=

⌊
−p′

p

⌋
+
⌊
− q′

q

⌋
+
⌊
− r′

r

⌋
.

For oppositely oriented manifold we can easily calculate that

e(−M) = −e(M) and e0(−M) = −3− e0(M).

Remark 12. We make the following remarks for why Conjecture 11 is non-trivial for Brieskorn
spheres.

(1) Since Σ(p, q, r) is the link of complex hypersurface singularity, it always bounds some
Stein manifolds, the so called Milnor fiber. Conjecture 11 is a prediction about how small
can or cannot be the topology of Stein filling of Brieskorn spheres. Singularity theory
aspect of Milnor fiber is quite relevant here (see Section 3.2 for more details) but we would
like to point out that on a fixed Σ(p, q, r) there might be many Stein fillable structures
that are not isotopic to Milnor fillable structure. It is this aspect that makes Conjecture 11
particularly complicated to approach.

(2) Many Σ(p, q, r) embed smoothly in R4. For example, all of the Casson-Harer [8], Stern
and Fickle [19] families admit such embedding.

(3) A homology sphere that embeds in R4 necessarily bounds an acyclic 4-manifold. Some
Σ(p, q, r) have this property, some do not.

(4) Finally Conjecture 11 is the only non-trivial case of Seifert homology spheres based on
the following conjecture first by Finstushel-Stern [20] in 1985 and again by Kollár [33] in
2008.

Conjecture 13 (Fintushel-Stern and Kollár). A Seifert homology sphere with more than 3 singular
fibers cannot bound an acyclic 4-manifold.

As a start, we consider Conjecture 11 in the context of the family of Brieskorn spheres Σ(2, 3, 6m±
1). For many members of this ubiquitous family, the conjecture can be answered affirmatively
by purely topological means. For example, we have:

• For odd m, both Σ(2, 3, 6m − 1) and Σ(2, 3, 6m + 1) have nontrivial Rokhlin invariant,
hence neither bounds an acyclic 4-manifold. In particular these manifolds do not admit
even a smooth embedding in C2.
• For even m, the Brieskorn sphere Σ(2, 3, 6m − 1) has R = 1, where R is the invariant of

Fintushel-Stern. By Theorem 1.1 of [20], it follows that none of these manifolds bound
acyclic 4-manifolds either. Indeed, whenever Brieskorn sphere Σ(p, q, r), as a Seifert
fibered space, has e0 = −2, then by a calculation of Neumann and Zagier in [42] it has
R = 1. So, it never bounds an acyclic 4-manifold. Moreover, according to [30, Corol-
lary 3], such a manifold cannot even bound a rational homology ball.
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This leaves the family Σ(2, 3, 12n + 1), for which no standard invariants (e.g., Rokhlin or µ̄,
Fintushel-Stern’s R, the Heegaard-Floer d-invariant, or Manolescu’s lift β of the Rohlin invariant
[36]) obstruct an acyclic filling. In fact it is known by work of Akbulut-Kirby [2] and Casson-
Harer [8] in the case n = 1, and Fickle [19] when n = 2, that both Σ(2, 3, 13) and Σ(2, 3, 25) are
the boundaries of smooth contractible 4-manifolds each of which has a handle decomposition
with one 1-handle and one 2-handle. In particular, both of these admit smooth embeddings in
C2. For n ≥ 3, neither an acyclic 4-manifold bounding Σ(2, 3, 12n + 1) nor an embedding in C2

appear to be known, but it seems plausible that both exist.
Mark and the author in [38] provided the first verification of Conjecture 11 for a family of

Brieskorn spheres of which some are known to admit a smooth embedding in C2. More precisely
we proved:

Theorem 14 (Mark-Tosun). Suppose X is a smooth compact oriented acyclic 4-manifold whose bound-
ary is the Brieskorn sphere −Σ(2, 3, 12n + 1), for some n ≥ 1. Then X cannot be made symplectic that
weakly fills a contact structure on its boundary.

Note that Σ(2, 3, 12n + 1), with either orientation, does admit Stein fillings. As perhaps the
first evidence for Conjecture 11, we have:

Corollary 15 (Mark-Tosun). No member of the family −Σ(2, 3, 12n + 1) admits a pseudoconvex em-
bedding in C2.

On the other hand for correcty oriented Brieskorn homology sphere Σ(2, 3, 12n+1), Mark and
the author proved the following result, where the proof is carried by carefully studying certain
complex surfaces and making use of an interplay between Symplectic/contact geometry, gauge
theory and 3/4-manifold topology.

-1
W

FIGURE 5. The first example of a contractible manifold with no Stein structure
with either orientation.

Theorem 16 (Mark-Tosun). Let W denote the contractible 4–manifold constructed by Akbulut-Kirby
in [2], see Figure 5, with boundary the Brieskorn sphere Σ(2, 3, 13). Then W does not admit any Stein
structures, with either orientation.

3.2. Gompf’s conjecture: Singularity theory aspect. There is also the rich singularity theory
aspect of the research program above, which, if developed, will provide further evidence for
Conjecture 11. We briefly explain this and make the connection. Recall that the link of a nor-
mal complex surface singularity—for example a Brieskorn manifold—admits a natural contact
structure known as the Milnor fillable contact structure. Analytic smoothings of the singularity
give rise to Stein fillings of this contact structure, and following Némethi and Popescu-Pampu
(c.f. [40, Section 1.3]) it is natural to ask whether this construction produces all symplectic fillings
of the Milnor fillable contact structure.
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Question 17. Is there a bijective correspondence between the Milnor fibers of the smoothing components
of a normal surface singularity and the symplectic fillings of the corresponding contact boundary of the
singularity?

This correspondence was shown to hold for cyclic quotient singularities in [40], and extended
to all quotient singularities by Park–Park–Shin–Urzúa in [44]. The latter makes a heavy use of
algebraic geometry. The singularity corresponding to Σ(p, q, r) is not rational, and hence does
not admit an acyclic smoothing. In particular a “positive” answer to Conjecture 11 will provide
strong evidence that the answer to Question 17 is YES if the Milnor fillable structure is unique
(which the case for Σ(2, 3, 12n+ 1)). Conversely, a positive answer to Question 17 together with
the fact that analytic smoothing cannot produce acyclic fillings of the link would immediately
verify Conjecture 11 for Σ(2, 3, 12n+1) (or any Σ(p, q, r) that has a unique tight contact structure).
We want to add that in a recent preprint, Plamanevskaya and Starkston [45] show that the answer
to Question 17 is negative for certain rational singularities.

4. MORE EXAMPLES

4.1. Non-Stein contractible 4–manifold with hyberbolic boundary. In this section we give an
example of a non-Stein contractible manifold with hyperbolic boundary. Consider the con-
tractible manifold in Figure 6. From its handle description, one can easily calculate that the
2–handle is attached along a knot for which the obvious Legendrian representative has tb = −5,
which makes it difficult to apply Eliashberg’s result in Theorem 7. Of course, it is possible that
this knot has another Legendrian representative for which tb = 0, but it is not obvious how
to find such a representative. Our result below yields immediately that such a representative
cannot exist.

-1
H

FIGURE 6. A non-Stein contractible 4–manifold. Its boundary is diffeomorphic to
Y2, the 3–manifold obtained by smooth −1

2 surgery on the figure-eight knot.

Theorem 18. Let Yn denote the 3–manifold obtained by smooth − 1
n surgery on the figure-eight knot.

Suppose X is a smooth compact oriented acyclic 4-manifold whose boundary is Yn, for some n ≥ 1. Then
X does not admit a symplectic structure weakly filling a contact structure on its boundary. In particular,
the contractible 4–manifold H in Figure 6 does not admit any Stein structures.

The reason for this as we will explain is entirely due to the contact topology of the boundary.

Proof. The classification of exceptional (i.e. non-hyberbolic) surgeries on the figure-eight knot
is completed in [7, Theorem 1.1(4)]. It follows from this classification that the manifold Yn, see
Figure 7, is a hyperbolic manifold for any n 6= 0, 1,−1 (the case n = 1 corresponds to −Σ(2, 3, 7)
and this is already covered in Theorem14). Recall that a Stein domain induces a natural tight
contact structure ξ on its boundary Y as the field of complex tangencies. The homotopy class of
an oriented tangent 2-plane field ξ on a homology sphere Y is determined by an invariant θ(ξ) =
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c21(X, J)−2χ(X)−3σ(X) ∈ Z. Thus, if (Y, ξ) is the contact boundary of an acyclic Stein manifold
(X, J), then necessarily θ(ξ) = −2. The same conclusion holds if (Y, ξ) is weakly symplectically
filled by an acyclic manifold (X,ω), since we can select an almost-complex structure compatible
with both ω and ξ. In other words, if Y is an integral homology sphere, then the classification of
tight contact structures on Y , if possible to determine, is a crucial first step to understand whether
Y bounds an acyclic weakly symplectic 4-manifold or not. Now in our case, Yn is a homology
sphere, and the classification of tight contact structures on Yn for n > 0 is recently produced
in [12]. According to this classification, Yn admits exactly two tight structures both of which are
Stein fillable. Moreover, it was further proved that these contact structures have non-vanishing
reduced Heegaard-Floer contact classes. The reduced contact class lives in HF+

red(−Yn), and this
group is calculated in [53] to be Zn(−1) where the subscript is the degree in which the contact class
is supported. Since the contact structures we are interested in have torsion Chern classes, their
contact invariant lies in degree− θ

4− 1
2 [54]. But this degree must be -1. So we conclude that θ = 2

is the only possible value for tight structures on Yn. Hence there cannot exist an acyclic weakly
symplectic manifold that fills Yn. This finishes the first part of the theorem. Finally, observe that
Yn, as a 3–manifold is diffeomorphic to a manifold obtained by smooth −1 surgery along the
twist knot Kn, see Figure 7. To see this simply blow up the crossing in the figure-eight knot to
convert it to a surgery on a symmetric link with framings − 1

n and −1. Swapping these framings
and applying n positive Rolfsen twists gives the other description of Yn that we are claiming.
When n = 2, K2 is Stevedore’s knot 61, which is the only slice twist knot. Now a simple handle
calculus proves that ∂H is obtained by smooth −1 surgery along 61 knot which is Y2. Hence H
cannot carry any Stein (even weakly symplectic) structure. �

Remark 19. We make a few remarks about Yn and their smooth/symplectic fillings.

(1) Observe that the manifold Yn bounds a smooth rational homology ball for any n. To
see this we describe Yn as a surgery on a link: 0 surgery on the figure eight knot, and n
surgery on its meridian. Since the figure-eight knot is rationally slice, that is it bounds
a smooth disk in a rational ball filling of S3, the latter description of Yn gives that Yn is
the boundary of the 4–manifold obtained by attaching a 2-handle in the complement of
rational slice disk. Such a 4–manifold must be a rational ball itself, which can be verified
by simple homology calculations. But by the same argument as in the proof above above
such a rational homology ball for n > 0 cannot be Stein. For n = −1, one can use a
Donaldson type argument to conclude that any rational homology ball bounded by Y−1 ∼=
Σ(2, 3, 7) must have a 3–handle in it. More precisely, by [21, Lemma 2.1] Y−1 embeds
in a K3 surface M , splitting it into submanifolds M = X ∪ Y with intersection forms
IX ∼= E8 ⊕H and IY ∼= E8 ⊕ 2H . Now if Y−1 were to bound a rational homology ball Z
without 3-handles, turning this handle decomposition over, Z can be obtained from ∂Z
by attaching handles of index ≥ 2. In particular there is a surjection π1(∂Z) → π1(Z),
which would imply the manifold M ′ = (M \ X) ∪ Z is a simply connected smooth 4-
manifold with intersection formE8⊕2H contradicting Donaldson’s result [13, Theorem B,
C]. Hence, Y−1 cannot bound a rational homology ball carrying a Stein structure. But this
argument does not generalize to other n < 0 values, even though explicit rational balls
we know in some other cases also have 3–handles in them [4].

(2) By using surgery formula for Rokhlin invariant, one can show the manifold Yn can never
bounds a smooth acyclic manifold when n is odd. On the other hand, as in Figure 6, Y2
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bounds a Mazur-type contractible manifold. At the moment, for n > 2 even, neither an
acyclic or contractible manifold bounding Yn is known nor any of standard homology
cobordism invariants obstructs an acyclic filling.

(3) Finally, if we switch the orientation of the contractible manifold H , then we can easily
equip it with a Stein structure, as Eliashberg’s result Theorem 7 easily applies in that
case. So, the claim in Gompf’s conjecture about “either orientation” must be specific to
Seifert homology spheres.

− 1
n −1

n

FIGURE 7. The 3–manifolds on the left and the middle are diffeomorphic. On the
left is the 3-manifold obtained by smooth− 1

n surgery on the figure eight knot and
the middle is the 3-manifold obtained by smooth−1 surgery along twist knotKn,
where n stands for n right handed full twists if n > 0 and n left handed full twists
if n < 0. On the right is the Stevedore’s knot 61, which is the only slice twist knot.

4.2. Non-Stein Rational Homology Balls. In this section we provide two infinite families of ra-
tional homology spheres that have Stein fillable boundary and bound smooth rational homology
balls but cannot bound any such balls which carries a Stein structure.

LetMp,p,2 andMp,p,p denote the Seifert fibered manifolds which are rational homology spheres
depicted in Figure 8 (note that these 3-manifolds are the same when p = 2). By performing
handle calculus we can easily see explicit rational homology balls, see Figure 9, that smoothly fill
Mp,p,2 andMp,p,p – In Figure 10 we describe the explicit handle calculus showing ∂Qp,p,p ∼= Mp,p,p.
The other case is identical. The manifoldsMp,p,2 andMp,p,p were also listed by Casson and Harer
in [8] that they bound rational homology balls. More specifically, let s = −1 in [8, Theorem-(5)]
for Mp,p,2 and s = 0, q = p in [8, Theorem-(3)] for Mp,p,p.

− p
p−1

−2

− p
p−1 −p −2

− p
p−1

−p

−2

FIGURE 8. The 3–manifolds Mp,p,2 and Mp,p,p described as Seifert fibered spaces
with normalized Seifert invariants.
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0−p+ 2

p strands

FIGURE 9. On the left is the rational homology ball Qp,p,2 that smoothly fills
Mp,p,2. On the right is the rational homology ball Qp,p,p that smoothly fills Mp,p,p.

0

− p
p−1 − p

p−1
−p

−2

−p

0 0 p p

...

1

1

p
p−1

pp

1
p p

12

.

.

.

2

2

2

∂
∂

∼=∼=

(a)
(b) (c)

(d)(e)(f)

∼=

FIGURE 10. On the left is the rational homology ball Qp,p,p. Replacing the 1-
handle with 0-framed 2-handle we obtain the 2-handlebody in (b). Applying p
blow ups yields (c). Applying successive handleslides yields (d). Applying the
operation of slum-dunk successively yields (e). Finally applying three negative
Rolfsen twists yields the drawing in (f) which is Mp,p,p.

Theorem 20. Let X is a smooth compact oriented rational homology ball whose boundary is Mp,p,2 or
Mp,p,p for some p. Then X does not admit a symplectic structure weakly filling a contact structure on its
boundary for any integer p ≥ 2.

The proof is a corollary of the following lemma.

Lemma 21. For each positive integer p,
(1) The manifold Mp,p,2 supports exactly p − 1 distinct isotopy classes of tight contact structures,

ξi where −(p − 2) ≤ i ≤ p − 2 and i ≡ p (mod 2) , which all are Stein fillable and have
θ(ξi) = p3−(p+2)i2

p2
.

(2) The manifolds Mp,p,p support exactly p − 1 distinct isotopy classes of tight contact structures,
ξi where −(p − 2) ≤ i ≤ p − 2 and i ≡ p (mod 2), which all are Stein fillable and have
θ(ξi) = 2(p2−p−i2)

p .

Indeed, assuming the truth of Lemma 21 for the moment, we can easily check that none of
the tight contact structures ξi realizes the value θ = −2. In particular there is no tight contact
structure onMp,p,p orMp,p,2 that can have θ = −2 as its 3–dimensional homotopy invariant. Now
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ifX were a rational homology ball that was a weak symplectic filling ofMp,p,2 (or onMp,p,p), with
some compatible almost complex structure J , then it would induce a tight structure ξ on Mp,p,2

(or on Mp,p,p) with
θ(ξ) = c21(X, J)− 2χ(X)− 3σ(X) = −2

But as we derived using Lemma 21 that there is no such tight structure onMp,p,2 (or onMp,p,p),
yielding the claim in Theorem 20.

Remark 22. One can easily show that the rational homology ball Qp,p,p depicted in Figure 9
smoothly embeds in R4. To see this, attach a 2-handle along a trivial curve running over the
1-handle with framing 0. Then this new 2-handle and the 1-handle of Qp,p,p cancel each other,
leaving behind a 2-handle attached along a 0-framed unknot. Attaching a 3-handle to this yields
B4 ⊂ R4. On the other hand, the rational homology ball Qp,p,2 cannot even smoothly embed
in R4 when p 6= 2. This is because its boundary Mp,p,2 has H1(Mp,p,2;Z) ∼= Z/p2Z when p is
odd (for example M3,3,2 is diffeomorphic to a manifold obtained by smooth 9

2 surgery on the
positive trefoil knot), and H1(Mp,p,2;Z) ∼= Z/2Z ⊕ Z/(p2/2)Z when p is even. But a result due
to Hantzsche from 1938 [31] says that if a 3–manifold Y embeds in S4, then the torsion part of
H1(Y ) must be of the form G⊕G for some finite abelian group G. So, when p 6= 2, the manifold
Mp,p,2 cannot embed in R4 nor can Qp,p,2.

Proof of Lemma 21. One can easily check that Mp,p,p and Mp,p,2 are L-space for any positive in-
teger p [35, Theorem 1.1], and the classification of tight contact structures on such manifolds is
completed by Ghiggini in [24] (see also [50]). According to that classification, Mp,p,2 and Mp,p,p

each have exactly p − 1 tight contact structures, which are all Stein fillable. We can explicitly
list and describe these Stein fillable structures as follows. Consider first the 4–manifold Xp,p,p

with ∂Xp,p,p = Mp,p,p, which is given as a link surgery as in Figure 11. We convert this to a
Legendrian surgery on all possible Legendrian realizations of the link, where each component
is Legendrian unknot. We easily see that the only component of this Legendrian link that will
require stabilizations is the one with framing −p, and for which p − 2 stabilizations are needed.
This stabilizations can be done in p − 1 ways, yielding a Legendrian unknot Ki with rotation
number r(Ki) = i where −(p− 2) ≤ i ≤ (p− 2) and i ≡ p (mod 2). From this we obtain Stein do-
main (Xp,p,p, Ji), and hence p− 1 Stein fillable tight contact structures ξi on the boundary Mp,p,p.
Finally, by a result of Lisca-Matić these contact structures are pairwise different, which yields
the exact number of tight contact structures on Mp,p,p. Moreover from this description we can
calculate the characteristic values of the Euler characteristic, signature and the square of the first
Chern class of (Xp,p,p, Ji) as follows.

First from the handle diagram in Figure 11, it is easy to calculate that χ(Xp,p,p) = 2p+ 1. Next
since Mp,p,p is an L-space, by a result of Ozsváth-Szabó [55, Theorem 1.4.] any symplectic filling
of Mp,p,p is negative definite. In particular, Xp,p,p is negative definite, and hence σ(Xp,p,p) = −2p.
Finally, following Gompf [26], we can calculate the square of the first Chern class as

(2) c21(Xp,p,p, Ji) =~r T I−1p ~r

where

~r =
[
0 0 · · · 0 0 · · · 0 r(Ki)

]T
is the rotation vector and Ip is the intersection matrix given as:
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Ip =



−2 1 1 1
1 −2 1

1 −2 1
. . .
1 −2

1 −2 1
1 −2 1

. . .
1 −2

1 −p


We note that, when forming the intersection matrix Ip of Xp,p,p, we started with the central

curve, then ran through the chain of −2 spheres on the left and the chain of −2 spheres on the
right and finally −p sphere in the middle of the Figure 11. Now using the fact that the rotation
vector~r can be non-zero only in one entry, we find it easier to solve the linear system Ip~x =~r for
~x = [a, x1, · · · , xp−1, y1, · · · , yp−1, z]T . In fact, we only need to know the term z in this vector for
our final calculation. The liner system Ip~x =~r expands as

−2a+ x1 + y1 + z = 0

a− 2x1 + x2 = 0

x1 − 2x2 + x3 = 0

· · ·
xp−2 − 2xp−1 = 0

a− 2y1 + y2 = 0

y1 − 2y2 + y3 = 0

· · ·
yp−2 − 2yp−1 = 0

a− pz = r(K)

Now some easy calculations shows that z = −2 r(K)
p . As explained above, the Legendrian knot

in Figure 11 need to be stabilized p− 2 times, yielding Legendrian knot Ki with rotation number
r(Ki) = i where −(p − 2) ≤ i ≤ (p − 2) and i ≡ p (mod 2). Substituting this in Equation 2, we
get:

c21(Xn, Ji) =~rT I−1p ~r =~rT~x = −2i2

p
.

Thus Gompf invariant of ξi, for−(p− 2) ≤ i ≤ (p− 2) and i ≡ p (mod 2), can be calcuted to be

θ(ξi) =
2(p2 − p− i2)

p
.

From this, we can easily see that none of the tight contact structures realizes the value of
θ = −2.
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In a quite similar way, we can list exactly p−1 tight structures for ξi onMp,p,2, where−(p−2) ≤
i ≤ (p − 2) and i ≡ p (mod 2), from its Stein fillings (Xp,p,2, Ji). From this, again similar to the
case above we can easily calculate the characteristic values of Xp,p,2 and use those to compute
that θ(ξi) = p3−(p+2)i2

p2
, and see immediately that none realizes θ = −2 value.

−2

−2

−2

−2

−2

−2

−2

−2

−2

−p

−2

−2

−2

−2

−2

−2−p

FIGURE 11. On the left is the 4–manifold Xp,p,2 with ∂Xp,p,2 = Mp,p,2, and on
the right Xp,p,p with ∂Xp,p,p = Mp,p,p. In each figure the number of −2 framed
unknots in each of the chain is p− 1.
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